###############################################################
### Syria Mapping Example (Whole Country, Iterated by Item) ###
###############################################################
# This script will print out a map of a Syria as a background layer, and the
# and then for every column in the imported .csv file (excepting the id column used
# to join the dataset to the spatial data), will create a map layering this column's
# numeric data on top of the country foranalysis, then outputting the
# resulting map to a subfolder.
# Labeling each region with data is optional, but the output is too cluttered so
# not done in this example.
# As the current HDX Syria Spatial data does shows communities, this is a good
# example of mapping data by communities as points, instead of by polygons
# (as would be appropriate if we were mapping subdistrict medians).
# DEFINE NEEDED INPUTS HERE
output_folder_path <- paste("Output/Syria/Overview Maps") # Define output directory
label_variable <- "NAME_EN" # (Typically the english-language name of the spatial unit
# you merged the dataframe with the spatial data.)
#INPUTS ALREADY DEFINED (if ran the 01- Load Enviroment and 02 - Join Data scripts)
#df <- imported csv dataframe containing data to be mapped
#df_key <- vartiable in csv used as key to join spaital layer with csv
#spatial_layer <- spatial layer (must have already been joined with csv data)
#spatial_key <- vartiable in spatial layer used as key to join spaital layer with csv
# Below this Line should not need to touch #
############################################
# Define output directory
dir.create(output_folder_path, recursive = TRUE)
# Set list of variables to map (all but key in original dataframe)
var_list <- names(df)[names(df) != df_key]
# Define Syria Background Map
background_map_syria_country <- function(){
admin1 <- tm_shape(shp = syr_admin1, is.master = TRUE) + tm_borders(lwd = 2)
admin3 <- tm_shape(shp = syr_admin3) + tm_borders(lwd = .5)
admin4 <- tm_shape(shp = syr_pplp_adm4) + tm_dots(size = .01)
background_map <- admin1 + admin3 + admin4
background_map
}
#Create Syria Backgroun Map (Whole Country)
background_map <- background_map_syria_country()
#######################################
# Create Output Map, Iterate per item #
#######################################
# For every entry in var_list (referred to as 'i' below), this function will create
# a map layer visualizing the data, layer this on top of the background map, and
# then save the output.
lapply(var_list, function(i){
# fill_map_country creates a country-level map, data displayed as points.
data_layer <- try(points_map_country(spatial_dataframe = spatial_layer,
# Selects which variable to map
mapping_variable = i))
# Layer data_layer on top of background
output_map <- try(background_map + data_layer)
# Save Map to output file, at specified dimensions
try(save_tmap(tm = output_map,
# File name
filename = paste(output_folder_path,"/",i,"_country_overview.jpg",
sep = ""),
# Specify dimensions of image here
width = 1720, height = 1020, units = "px"))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.